terça-feira, 8 de dezembro de 2020

As transferências de jogadores de futebol

Encontrei há uns tempos um dataset com as 250 transferências de jogadores de futebol mais caras, cada ano, entre 2000 e 2018.
São 615 os clubes envolvidos, e achei curioso estudar esta rede.
Comecei por fazer um ranking dos clubes pelo número total de transferências


e registando também o grau In (total de jogadores recebidos) e o grau Out (total de jogadores transferidos).
São os tubarões de costume, uns com saldo positivo e outros com saldo negativo entre o In e o Out, tudo com o seu significado.
A rede de transferências que envolve estes clubes mostra a existência de um certo número de "comunidades" de clubes e alguma subtis diferenças quando se consideram os jogadores recebidos


ou os jogadores transferidos


As comunidades detectadas representam conjuntos de clubes em que há mais transferências intra comunidade do que entre comunidades.
Todo um "mundo" a explorar...

sábado, 11 de abril de 2020

Epidemias e redes [1]

As epidemias transmitem-se pelas redes de contactos físicos dos humanos. Assim, para estudar epidemias é necessário saber como os humanos se movimentam, dentro das suas comunidades homogéneas, entre comunidades geograficamente vizinhas, e entre comunidades distantes usando meios de transporte como o avião.
A difusão de epidemias não será muito diferente da difusão de ideias, ou de comportamentos, só que aqui também estes se podem movimentar entre comunidades distantes através de um simples WhatsApp ou um programa de televisão, por exemplo.
Num modelo altamente simplificado, supomos que a infecção dura um dia, e que todos ficam curados, mas não imunizados, e que só intervêm dois factores, k, o número de indivíduos que um indivíduo pode infectar, e que tem a ver com o seu isolamento pessoal, e p, a probabilidade de um indivíduo ser infectado, que depende das suas vulnerabilidades próprias e do uso de dispositivos de protecção individual.
Neste modelo simples, numa população homogénea surge um indivíduo infectado, que vai contactar com k indivíduos, que infecta com uma probabilidade p e tudo depende deste valor R0=kp.


Se R0 for menor que 1 a infecção vai eventualmente extinguir-se e se R0 for maior que 1 vai eventualmente propagar-se a toda a população, ao fim de algum tempo.
Sem esquecer que se trata de probabilidades, e que, portanto, se os números forem pequenos os resultados podem parecer inesperados, aquele factor R0 é determinante para a propagação da epidemia.
Qualquer que seja o valor de R0 > 1, o crescimento será inicialmente exponencial, mas não crescerá indefinidamente, pois à medida que se aproxima da população total começa a ser difícil encontrar indivíduos disponíveis para infectar.


Nesta figura, começamos com um único infectado no dia inicial, e vê-se que o crescimento da epidemia é muito sensível ao valor de R0.
Analisaremos em próxima publicação os efeitos da imunidade e do esgotamento da população não infectada.
Uma boa referência é este capítulo do livro Networks, Crowds, and Markets: Reasoning about a Highly Connected World, de David Easley e Jon Kleinberg, Cambridge University Press, 2010.